
Multiplex8+ RESULTS

PATIENT		SAMPLE		ORDERING PHYSICIAN	
Name:		Specimen ID:	MDX-PT-18	Name:	
ID:		Date of collection:		Address:	
Report date:	11 September 2023	Туре:		Contact:	

TEST DESCRIPTION

The **Multiplex8+** breast cancer test assesses RNA-based biomarkers by conducting a **VISUALIZATION TEST** that uses RNA fluorescent in situ hybridization (RNA-FISH) to visualize a panel of biomarkers. Based on the expression of these biomarkers and the tissue histology, laser capture microdissection is used to dissect out regions of interest. With these tumor-enriched samples, a **SEQUENCING TEST** that utilizes total RNA next generation sequencing to survey gene expression in a spatially resolved manner, is further carried out. Analytical validation of **Multiplex8+** was conducted on a large retrospective cohort of 1 080 breast tumors.

- RECEPTOR STATUS: for RNA expression of the estrogen receptor, progesterone receptor, Her2 receptor, and Ki67 measured and cross-validated by the two tests.
- MOLECULAR SUBTYPE: based on RNA gene expression tumor biology.
- 3. GENE SIGNATURES: personalized for patients' tumor biology and clinical status.

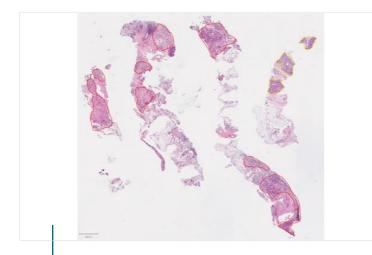
A SUMMARY IS PROVIDED BELOW AND ADDITIONAL DETAILS ARE PROVIDED IN THE FOLLOWING PAGES.

RESULTS SUMMARY

RECEPTOR STATUS							
Sample	ESR1	PGR	ERBB2	MKI67			
А	+	+	+	-			
В	+	+	_	-			

MOLECULAR SUBTYPE

Intrinsic subtype	TNBC subtype
Her2+	-
Normal-like	-


RELEVANT TREATMENT

THERAPY	THERAPY KEY FINDINGS		
Endocrine therapy	Gene expression, gene expression signature, clinical parameters	Predicted benefit	
Anti-Her2	Gene expression, gene expression signature, molecular subtype, clinical parameters	Predicted benefit	
Sacituzumab govitecan (Trodelvy)	Gene expression	Predicted benefit	

ID:

LASER CAPTURE MICRODISSECTION

Based on histological assessment and RNA-FISH biomarker expression, two samples were laser capture microdissected for further analysis. Sample A (red outline)

Sample B (yellow outline)

MOLECULAR SUBTYPE

Intrinsic subtype	TNBC subtype ²⁻⁴
Her2+	-
Normal-like	-

RECEPTOR STATUS

Sample	ESR1	PGR	ERBB2	MKI67
A	+	+	+	-
В	+	+	-	-

Receptor status was determined using both the **VISUALIZATION TEST** and **SEQUENCING TEST**: the table shows results after cross-validation.

INTERPRETATION

- PGR status is not concordant with the immunohistochemistry findings.
- Since low hormone receptor expression may more closely resemble TNBC than ER+ breast cancer, molecular subtyping and other biomarkers may provide more information about the underlying biology of the tumor.

Based on the **SEQUENCING TEST**, we used a consensus subtyping approach consisting of our proprietary 293 gene molecular subtyping signature, a research-based PAM50 test and the AIMS method to classify the intrinsic molecular subtype ¹. TNBC subtype, if applicable, was classified according to Lehmann ²⁻⁴.

INTERPRETATION

- The molecular classification as Her2+ subtype for Sample A and Normal-like for Sample B is inconsistent with the immunohistochemical and clinical designation. This is not uncommon. For example, in the METABRIC cohort, 26% and 7% of ER+/PR-/Her2+ samples were classified as Her2+ and Normal-like, respectively, by PAM50.
- The Her2-enriched subtype (Her2+) is characterized by overexpression of Her2 and its downstream signaling pathways. Her2+ breast cancer has a poorer prognosis than luminal breast cancers and generally responds to anti-Her2 targeted therapies.
- The Normal-like subtype is characterized by high expression of stromal and healthy tissue genes and is likely a byproduct of low tumor content or cellularity.

GENE SIGNATURE

• Based on the assigned molecular subtype, and TNBC subtype (if applicable), we evaluated several individual genes and gene signatures that demonstrate prognostic and predictive potential in early and advanced/metastatic settings.

Treatment	Gene	Description	Sample A	Sample B
type/ Pathway	signature		Percentile	Percentile
Prognosis	Consensus prognostic signature	The prognostic signature is derived from a consensus of three research-based prognostic signatures, including the 21-gene signature GENE21 ⁵ , the 70-gene GENE70 signature ⁶ , and the 50-gene risk of relapse based on subtype alone (ROR-S) signature ⁷ . The prognostic signatures are intended for early-stage breast cancer patients with ER+/Her2– IHC, lymph node-negative, or 1-3 positive lymph nodes. The score is reported as high, intermediate, or low. Patients with high signature scores are at a greater risk of relapse and may benefit from adjuvant chemotherapy, while patients with low scores have lower risk of relapse and may not benefit from adjuvant chemotherapy.	-	High

Treatment	Gene	Description	Sample A	Sample B
type/ Pathway	signature	Description	Percentile	Percentile
	ESR1	The ESR1 and PGR genes encode for the estrogen (ER) and progesterone (PR) hormone receptors, respectively, which are involved in growth, metabolism, and	Low (33%)	Low (33%)
Luminal	PGR	reproductive functions. High ER/PR is predictive of endocrine therapies and low or negative ER/PR is associated with poor prognosis ⁸ .	Medium (43%)	Medium (42%)
signatures	ESR1_PGR average	The average gene expression of ESR1 and PGR. Higher levels of hormone receptors are predictive markers for endocrine therapies.	Low (33%)	Low (32%)
	E2F4_score	This gene signature assesses activity of the E2F4 transcription factor and its targets. A high E2F4 signature is associated with endocrine resistance to aromatase inhibitors and may predict sensitivity to CDK4/6 inhibitors ⁹ .	Medium (42%)	Low (1%)
	ERBB2	The ERBB2 gene is translated into Her2, a receptor tyrosine kinase involved in cell growth/proliferation and is both a prognostic marker and predictive of response to Her2 targeted therapies ⁸ .	High (93%)	Low (15%)
	MUC4	Mucin 4 (MUC4) is a glycoprotein that is implicated in resistance to trastuzumab through interactions with the Her2 receptor. High MUC4 is associated with reduced sensitivity to trastuzumab ¹⁰ .	Low (20%)	High (99%)
Her2	NRG1	NRG1 codes for neuregulin 1, a ligand of the Her3 receptor. In the phase II NeoSphere trial, high NRG1 gene expression was associated with reduced response to neoadjuvant trastuzumab, but not combination trastuzumab-pertuzumab ¹¹ .	Medium (34%)	High (95%)
	pSTAT3-GS	A signature that predicts phosphorylation of STAT3 and was found to be predictive of trastuzumab resistance in the FinHer study ¹² .	Medium (38%)	High (90%)
	Her2 amplicon_ MDX	Proprietary MDX 43-gene signature used to assess Her2 status.	Medium (51%)	Low (19%)
	Module7_ ERBB2	Her2-signaling signature predictive of response to multiple anti-Her2 treatments in the I-SPY2 trial ¹³ .	Medium (42%)	Low (15%)
	AURKA	Aurora Kinase A (AURKA) is a protein coding gene involved in cell proliferation and is an independent prognostic marker in breast cancer.	Low (26%)	Low (1%)
Proliferation	МКІ67	MKI67 codes for the marker of proliferation Ki67 protein, a marker of poor prognosis in ER+/Her2– tumors, but not Her2+ or TNBC tumors. Ki67 levels are also predictive of sensitivity to neoadjuvant endocrine and chemotherapies ⁸ .	Medium (48%)	Low (2%)
	Module11_ proliferation	Proliferation index used in I-SPY2 trial broadly predictive of pathological complete response in hormone receptor positive patients ⁴ .	Low (31%)	Low (5%)
	Proliferation_ MDX	Proprietary MDX 7-gene signature used to assess cellular proliferation and cross- validate MKI67 expression levels.	Low (31%)	Low (4%)
	CDK4	Cyclin-dependent kinases 4 and 6 (CDK4 and CDK6) are important proteins that regulate cell cycle progression from G1 to S phases. They are the main targets of	Low (25%)	Low (10%)
	CDK6	CDK4/6 inhibitors such as palbociclib (Ibrance), ribociclib (Kisqali), and abemaciclib (Verzenio); however, it is unclear whether their expression level predicts CDK4/6 inhibitor sensitivity.	High (77%)	High (71%)
CDK4/6 inhibitors	CCNE1		Low (12%)	Low (5%)
	CCND3	Elevated expression of the G1/S cell cycle regulators, CCNE1, CCND3, and CDKN2D, was associated with resistance to palbociclib (Ibrance) in the single-arm phase II neoadjuvant trial (NeoPalAna) ¹⁴ .	Low (14%)	Medium (61%)
	CDKN2D		Low (9%)	Low (13%)
PIK3CA mutations	PIK3CA-GS	A gene signature that is predictive of mutations in the PIK3CA gene and consequently the PI3K inhibitor alpelisib (Piqray). A high PIK3CA-GS score is also associated with activation of the PI3K/AKT pathway and loss of mTORC1 signaling, which may be relevant for response to mTOR inhibitors (e.g., everolimus) ¹⁵ .	Medium (59%)	High (100%)

Treatment type/ Pathway	Gene signature	Description	Sample A	Sample B
- utility	TOP1	The gene encoding DNA topoisomerase I, an enzyme critical for DNA transcription, is a target for anticancer drugs.	Percentile Medium (54%)	Percentile Low (24%)
	ΤΟΡ2Α	The gene encoding DNA topoisomerase IIa, an enzyme critical for DNA transcription, is a target for anticancer drugs.	Medium (39%)	Low (1%)
	RAD51	The DNA repair protein RAD51 homolog 1 (RAD51) is involved in the repair of damaged DNA and is associated with resistance to chemotherapy.	Low (25%)	Low (0%)
	ERCC1	The DNA excision repair protein ERCC-1 (ERCC1) is involved in the repair of DNA damage and is associated with resistance to chemotherapy.	Medium (48%)	Low (15%)
	TYMS	The Thymidylate Synthetase (TYMS) gene encodes a protein involved in DNA biosynthesis and is the target of the antimetabolite chemotherapy, 5-Fluorouracil ¹⁶ .	Low (25%)	Low (1%)
	SLC29A1	SLC29A1 codes for the equilibrative nucleoside transporter 1 (ENT1) protein, which is a nucleoside transporter that is involved in transporting gemcitabine and capecitabine ¹⁷ .	Medium (60%)	Medium (38%)
	DHFR	Dihydrofolate reductase is an enzyme coded by the DHFR gene and is involved in folate metabolism and cell growth. It is the target of the antimetabolite chemotherapy, methotrexate ¹⁸ .	Medium (51%)	Low (10%)
	SLC19A1	SLC19A1 codes for the reduced folate carrier 1 (RFC1) protein, which transports methotrexate into the cell ¹⁸ .	Medium (60%)	Low (1%)
	CDK12	The protein product of the Cyclin Dependent Kinase 12 (CDK12) gene regulates transcription, DNA repair pathways, and cell cycle ¹⁹ .	Medium (50%)	Low (18%)
Chemotherapy	MAPs_Mitotic_ki nases_neoadj_ch emo118	A 118-gene signature predicting response to neoadjuvant taxane chemotherapy ²⁰ .	Low (31%)	Low (20%)
	MAPs_Mitotic_ki nases_neoadj_ch emo17	A 17-gene signature predicting response to neoadjuvant taxane chemotherapy ²⁰ .	Low (31%)	Low (0%)
	Early_Relapse_E R.Neg	Chemoresistance gene signature predicting early relapse in ER-negative (ER-) patients after taxane-anthracycline chemotherapy ²¹ .	Medium (46%)	Low (18%)
	Residual_ disease_ ER.Neg	Chemoresistance gene signature predicting residual disease in ER-negative (ER-) patients after taxane-anthracycline chemotherapy ²¹ .	Medium (40%)	Low (31%)
	Pathologic_ response_ ER.Neg	Chemosensitivity gene signature predicting pathological complete response in ER-negative (ER-) patients after taxane-anthracycline chemotherapy ²¹ .	Medium (46%)	Medium (40%)
	Early_Relapse_E R.Pos	Chemoresistance gene signature predicting early relapse in ER-positive (ER+) patients after taxane-anthracycline chemotherapy ²¹ .	High (67%)	Medium (58%)
	Residual_ disease_ ER.Pos	Chemoresistance gene signature predicting residual disease in ER-positive (ER+) patients after taxane-anthracycline chemotherapy ²¹ .	Medium (42%)	Low (21%)
	Pathologic_ response_ ER.Pos	Chemosensitivity gene signature predicting pathological complete response in ER-positive (ER+) patients after taxane-anthracycline chemotherapy ²¹ .	Medium (36%)	Low (31%)

Treatment type/ Pathway	Gene signature	Description	Sample A Percentile	Sample B Percentile
	PDCD1	PDCD1 codes for the immune checkpoint marker PD-1. PD-1 is the target of pembrolizumab (Keytruda), an immunotherapy approved for the first-line treatment of metastatic TNBC.	Low (27%)	Medium (36%)
	CD274	CD274 codes for the immune checkpoint marker PD-L1. PD-L1 is the target of atezolizumab (Tecentriq), an immunotherapy approved for approved for the first-line treatment of metastatic TNBC.	Low (31%)	Low (10%)
	CTLA4	Cytotoxic T lymphocyte-associated antigen 4 (CTLA4) is an immune checkpoint marker and the target of several immunotherapies such as durvalumab (Imfinzi).	Low (12%)	Medium (45%)
Immune system	Module5_ TcellBcell		Low (27%)	Medium (66%)
	Chemokine12	Immune signatures predictive of response to pembrolizumab in TNBC	Low (29%)	Medium (46%)
	STAT1	patients enrolled in (I-SPY2 trial) ¹⁴ . All signatures, with the exception of Mast_cells, were associated with increased probability of achieving pathological complete response.	Low (20%)	Low (27%)
	Dendritic_cells		Medium (35%)	High (76%)
	Mast_cells		High (98%)	High (78%)
DNA damage and repair	VCpred_TN	DNA damage repair / immune signature predictive of response to veliparib (PARP inhibitor) and carboplatin (I-SPY2 trial) ¹⁴ .	Medium (39%)	Low (0%)
	VEGFA	A gene coding for vascular endothelial growth factor, a protein involved in angiogenesis, vasodilation, and endothelial cell growth. VEGF is the target of the drug bevacizumab (Avastin).	Low (3%)	Low (6%)
Angiogenesis/ hypoxia	Hypoxia / Angiogenesis / Inflammatory_ MDX	Proprietary MDX 7-gene signature used to assess hypoxia, angiogenesis, and inflammation. Signature includes genes known to be predictive of response to bevacizumab (Avastin) in the neoadjuvant GeparQuinto trial ²² .	Low (14%)	Medium (36%)
	ERBB2	ERBB2 codes for the protein receptor Her2, which is a target for classical anti- Her2 treatments. Low and ultralow levels of Her2 can be eligible for treatment with the antibody-drug conjugate, trastuzumab deruxtecan (Enhertu) ²³ .	High (93%)	Low (15%)
	TACSTD2	TACSTD2 codes for Tumor-associated calcium signal transducer 2, also called Trop-2, which is the target of sacituzumab govitecan (Trodelvy), an antibody-drug conjugate approved for metastatic TNBC ²⁴ .	Medium (35%)	High (89%)
	NECTIN4	Nectin Cell Adhesion Molecule 4 (NECTIN4) is a cell adhesion molecule that is a target for antibody-drug conjugates in clinical trials for breast cancer.	Low (27%)	Medium (38%)
ADC (antibody- drug conjugate)	ERBB3	ERBB3 codes for a member of the epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases. It is under investigation in clinical trials for the antibody-drug conjugate patritumab deruxtecan.	High (78%)	Low (27%)
targets	FOLR1	FOLR1 encodes the protein Folate Receptor Alpha, which is an antibody-drug conjugate target under investigation for the treatment of metastatic TNBC in several phase 1 and 2 clinical trials.	Low (30%)	High (98%)
	F3	F3 codes for tissue factor, coagulation factor III a target of several antibody- drug conjugates in phase 1 clinical trials.	Medium (48%)	High (81%)
	SLC39A6	The SLC39A6 genes encodes for the zinc transporter LIV-1, which is highly expressed in luminal breast cancers and is under investigation in several phase 1 and 2 clinical trials.	High (96%)	Low (17%)
	ТРВС	The trophoblast glycoprotein (TPBG) is overexpressed in many breast cancers and is the target of at least two antibody-drug conjugates undergoing phase 1 clinical trials.	High (79%)	Low (20%)

Treatment type/ Pathway	Gene signature	Description	Sample A Percentile	Sample B Percentile
	ROR2	A gene that encodes the Receptor Tyrosine Kinase Like Orphan Receptor 2 protein, a target of the antibody-drug conjugate (Ozuriftamab Vedotin (BA3021/CAB-ROR2-ADC) that is under investigation in a phase clinical trial for advanced solid cancers, including TNBC.	High (72%)	Low (11%)
	CD276	This gene codes for an immune checkpoint marker called CD276 (also known as B7-H3). It is the target of the antibody-drug conjugate (Mirzotamab clezutoclax (ABBV-155) that is in a phase 1 and 2 clinical trial for advanced solid cancers, including breast cancer.	Medium (36%)	Low (4%)
	VTCN1	V-Set Domain Containing T Cell Activation Inhibitor 1 (VTCN1 also called B7- H4) is an immune checkpoint marker and the target of the antibody- drug conjugate, SGN-B7H4V, which is under investigation in a phase1 clinical trial for advanced solid cancers, including breast cancer.	High (70%)	Medium (63%)
	CEACAM5	A gene that encodes CEA Cell Adhesion Molecule 5 protein, a target of the antibody-drug conjugate Tusamitamab ravtansine (SAR408701) that is under investigation in a phase 2 clinical trial for advanced solid cancers, including breast cancer.	High (80%)	Low (4%)

INTERPRETATION AND RECOMMENDATIONS

- While hormone receptor expression is low, it is present in both Samples A and B, suggesting a potentially beneficial treatment for both heterogeneous regions of the biopsy.
- Increased ERBB2 levels (in Sample A) and moderate Her2 amplicon signatures along with low to moderate expression of
 resistance markers (MUC4, pSTAT3-GS, and NRG1) indicate that Her2-related therapies such as trastuzumab, pertuzumab,
 trastuzumab emtansine, and tucatinib may be beneficial. Trastuzumab deruxtecan may be effective option for both Sample A
 and Sample B as it shows efficacy in patients with IHC Her2 +0²³.
- Moderate (Sample A) to high (Sample B) levels of TACSTD2 may predict sensitivity to the Trop-2 targeting ADC, sacituzumab govitecan. However, the SN-38 payload of sacituzumab govitecan targets TOP1, which is expressed only at moderate (Sample A) to low levels (Sample B).
- Both samples show high expression of several antibody-drug conjugate targets, including FOLR1 (Sample B) and SLC39A6 (Sample A).

REFERENCES

1. Gendoo, D.M.A. et al. Bioinformatics 32(7): 1097–1099 (2016). 2. Lehmann, B. D. et al. J Clin Invest 121: 2750–2767 (2011). 3. Lehmann, B. D. et al. PLoS One 11: e0157368 (2016). 4. Bareche, Y. et al. Ann Oncol 29: 895–902 (2018). 5. Paik, S. et al. N Engl J Med 351(27): 2817-2826 (2004). 6. van't Veer, L.J. et al. Nature 415(6871): 530-536 (2002). 7. Parker, J.S. et al. J Clin Oncol 27(8): 1160-1167 (2009). 8. Cardoso, F. et al. Ann Oncol 30(8): 1194-1220 (2019). 9. Guerrero-Zotano, A.L. et al. Clin Cancer Res 24(11): 2517-2529 (2018). 10. Mercogliano, M.F. et al. Clin Cancer Res 23(3): 636-648 (2017). 11. Guardia, C. et al., Clin Cancer Res 27(18): 5096-5108 (2021). 12. Sonnenblick, A. et al. BMC Med 13:177 (2015). 13. Wolf, D. M. et al. Cancer Cell 40: 609-623.e6 (2022). 14. Ma, C.X. et al. Clin Cancer Res 23(15): 4055-4065 (2017). 15. Loi, S. et al. PNAS 107(22): 10208-10213 (2010). 16. Foekens, J.A. et al. Cancer Res. 61: 1421-1425 (2001). 17. Mackey, J.R. et al. Clin Cancer Res. 8(1): 110-116 (2002). 18. Yang, V. et al. RSC Med Chem. 11(6): 646-664 (2020). 19. Filippone, M.G. et al. Nat Commun. 13(1): 2642 (2022). 20. Rodrigues-Ferreira, S. et al. Proc Natl Acad Sci USA 116(47): 23691-23697 (2019). 21. Hatzis, C. et al. JAMA 305(18):1873-81 (2011). 22. Karn, T. et al. Clin Cancer Res 26: 1896–1904 (2020). 23. Modi, S. et al. N Engl J Med 387: 9–20 (2022). 24. Michaleas, S. et al. ESMO Open 7 (2022).

